Rapid HIV self-testing: long in coming but opportunities beckon

Julie E. Myers a,b, Wafaa M. El-sadr c, Allison Zerbe c and Bernard M. Branson d

The recent approval by the United States (U.S.) Food and Drug Administration of a rapid HIV self-test marks a significant milestone in the evolution of HIV testing approaches. With nearly one in five people living with HIV in the United States still undiagnosed and an even higher proportion unaware of their infection globally, this decision reflects a new willingness to offer diverse options to get tested for HIV. Rapid self-testing offers several distinct opportunities to improve testing among those with undiagnosed HIV: to encourage testing among those who might not otherwise be tested, to increase the frequency of testing among persons at highest risk for new infection, and to facilitate mutual HIV testing with sex partners. To date, the path to regulatory approval has been long but instructive. The studies and clinical trials required for regulatory approval in the U.S. provide insight into the performance and potential implications of HIV self-tests as they become available for sale directly to consumers. Although some persistent reservations about self-testing for HIV remain, including the “window period” of the current test kit, its cost, and its effectiveness for facilitating entry to medical care, others have been dispelled. Self-testing in resource-constrained settings is also promising, including self-testing of health professionals. At present, although the impact has yet to be determined, availability of this new option may offer potential opportunities to improve HIV diagnosis and facilitate both treatment and prevention.

Introduction

Nearly one in five people living with HIV in the United States (U.S.) are unaware they are infected [1]. Globally, approximately 60% of those with HIV are unaware [2]. Persons who are unaware of their infection account for almost half of all sexual transmissions in the U.S. [3] and contribute disproportionately to the continued spread of HIV. Thus, HIV testing remains essential to HIV prevention efforts in the U.S. [4,5] and worldwide [6]. Prompt identification of HIV infection offers many benefits to both the individual and community. In the U.S., antiretroviral therapy (ART), with the goal of viral suppression, is now recommended for all persons with...
HIV infection [7]; in resource-constrained settings, WHO has recommended antiretroviral therapy for all persons with a CD4 cell count of <350 cells/µL and for the HIV-positive partner in serodiscordant couples [8,9]. Durable viral suppression improves immune function and quality of life, decreases morbidity and improves survival [7]. HIV-positive persons in the U.S. appear to reduce high-risk sexual behavior after they become aware of their diagnosis, at least temporarily [10]. Mathematical models provide support that early ART initiation would decrease HIV transmission [11–15] and findings from the HIV Prevention Trials Network 052 study [16], which documented this benefit, further stimulated interest in scaling-up HIV testing and using of ART for prevention. Thus, additional effective methods are needed to increase HIV testing Table 1.

Self-testing, with its convenience, privacy and anonymity, might present a promising option. With approximately 208,000 persons with undiagnosed HIV infection in the U.S. alone, 50,000 annual new infections in the U.S. [17] and 2.7 million globally [2], it is essential to promptly identify HIV-infected persons.

Rapid self-tests: possible roles

Rapid self-testing offers several potential opportunities. Firstly, it might be used by persons in high-prevalence communities who have eluded previous prevention and testing efforts [18]. In the U.S., the proportion of persons with undiagnosed infection is highest among racial and ethnic minorities and young people; an estimated 68% of all persons with undiagnosed HIV are black or Hispanic [1] and 60% of persons aged 13–24 years with HIV are unaware of their infection [1]. These same populations, i.e., racial and ethnic minorities and young people, expressed high levels of interest in using rapid HIV self-tests in a 2006 population-based telephone survey in New York City (NYC) [19]. Men who have sex with men (MSM), a population at high risk in the U.S.[5], were the subject of an online survey in six cities; among those who had never been tested for HIV, 86% of those likely to get a test in the next year expressed strong intentions to use a rapid self-test, if available [20]. A majority (87%) of MSM surveyed online in France were interested in self-tests, if available; interested men were more likely to have never tested or to have not tested in the past year, and to live their sex lives with men “in absolute secrecy” [21]. The small proportion of the MSM (3.5%) in the study who had already accessed unapproved tests online had similar characteristics [22].

A second prospect for rapid HIV self-tests might be to facilitate more frequent testing among persons at highest risk for HIV. CDC guidelines recommend HIV testing at least annually for individuals at high risk of HIV [23,24]. More frequent testing is necessary for populations with high incidence, and the convenience of self-testing could facilitate this. In the 2008 U.S. National HIV Behavioral Surveillance (NHBS), HIV prevalence was 19% among MSM; nearly half (44%) were unaware of their infection [25]. Although 61% of the MSM recruited from venues in 21 metropolitan areas reported testing for HIV within the preceding 12 months, 7% of these had a new, positive HIV test [25]. Fully 45% of the MSM who were unaware of their infection had been tested within the preceding 12 months [25]. Similarly, among MSM in a study of HIV self-testing at a Seattle sexually transmitted infections (STI) clinic, 84% said they would test more frequently with a rapid self-test – depending on its cost [26].

A third potential for rapid self-test is that such tests might facilitate mutual HIV testing with sex partners or even “point-of-sex” testing [27]. During in-depth interviews with HIV-negative MSM in NYC who never or rarely used condoms, 80% indicated that they would likely use an over-the-counter rapid HIV test to test sex partners (some with new partners and others indicated with established partners) [28]. In a follow-up study, 27 participants who received rapid test kits used them before planned intercourse with approximately 100 prospective...
sex partners; some of the kits were also used to test acquaintances [29]. No sexual intercourse took place after a detected positive test, and most participants said that having and using rapid HIV test kits shifted their perceptions of risk and led to changes in behavior [29].

Availability of rapid HIV self-tests offers a fourth opportunity. Such tests could be used to help detect "window period" infections by repeat testing several weeks after a negative HIV test in persons with very recent potential exposure to HIV. Rapid tests in wide use in the U.S. and globally detect only IgG antibodies and have an estimated window period of 25–35 days [30,31]. Studies at HIV testing programs in STI clinics demonstrated that, among patients with undiagnosed HIV, 5% of those in Malawi [32], 9% of those in NYC and 20% of MSM in Seattle had detectable HIV RNA despite a negative rapid antibody test [33,34].

Self-testing for HIV: old concept, new opportunities

The concept of self-testing for HIV is not new. Home collection kits for HIV testing were first proposed in 1986. However, professional organizations, public health agencies, and gay activists expressed concern that the tests might be inaccurate or increase the risk of suicide [35]. In addition, the U.S. Food and Drug Administration (FDA) expressed concern about the safety and efficacy of obtaining HIV test results without professional supervision. Nonetheless, in 1996, the FDA approved two home sample collection kits for HIV as technology advanced and desire for greater personal autonomy for health care decisions grew [35]. Both involved self-collection of dried blood spot specimens that are mailed to a laboratory for testing with access to test results by telephone [35]. Post-marketing data demonstrated that the kits were used by persons at risk and by those with no other access to HIV testing: more than half (including half with positive tests) had not been tested previously [36]. However, home sample collection kits were not widely adopted by persons at high risk for HIV infection [37].

Prospects for true self-testing for HIV changed considerably with FDA’s approval, in 2002, of rapid HIV tests eligible for waiver under the Clinical Laboratory Improvement Amendments (CLIA) [38], and their subsequent widespread use (even though their sale was limited to agents of a clinical laboratory) [39]. Rapid HIV tests significantly increase the number of people who learn their test results [40] and are preferred by high-risk persons [41] and those not previously tested [42].

Experiences with HIV self-testing

Three U.S.-based studies conducted with the oral fluid HIV test use demonstrated self-testing was feasible and persons were willing to perform the test. In an emergency department study in a Baltimore hospital, rapid HIV self-test results were 99.6% concordant with results of tests performed by health care professionals; 97% of participants agreed that oral fluid samples were "not at all hard to collect" [43]. In a randomized study of unobserved self-test use among MSM in Seattle, 68 men received a kit, 45 of whom obtained 100 additional kits for subsequent testing. Among 43 men who completed 69 surveys about the kits, it was noted to be "very easy to use" on 66 (96%) surveys and "somewhat easy to use" in the other three [26]. Among 42 MSM in a self-testing study in NYC, most participants performed the test without mistake while being observed [28]. International studies found similar results. In Malawi, 260 (92%) of 283 study participants elected an oral fluid self-test after a demonstration. Accuracy was 99.2% (2 of 48 participants with positive finger-stick blood rapid tests obtained negative oral fluid self-test results). Although 98.5% of participants agreed that the test was "not at all hard to do," 10% made minor procedural errors, and 10% required extra help [44]. A study of oral fluid self-testing in Singapore had similar findings [45]: 977 (99.1%) obtained correct results, and more than 80% said they would purchase a self-test.

The path to regulatory approval

In some countries, rapid HIV tests have been available over-the-counter for several years (e.g., in Hong Kong and Macao since 2005 [46] and in South Africa since 2007 [47]). In other countries, including the United Kingdom and Australia, sale of HIV tests to the public is prohibited [48,49], although HIV self-tests of uncertain accuracy are available directly via the internet [50].

In 2005, after review and public testimony, an FDA advisory committee concluded that self-testing offered potential for public health benefit and later established criteria to allow FDA approval [51]. These included a minimum threshold for accuracy, acceptable performance in a “real-world” context, and validation of instructional materials demonstrating that users understood the accuracy and limitations of the test (including the “window period”), and correct interpretation [52].

In 2012, the manufacturer of the oral fluid HIV self-test, OraSure Technologies (Bethlehem, Pennsylvania) submitted data to the FDA on 5,800 subjects recruited for unobserved self-testing [53] and presented these to the FDA advisory committee [54]. Label comprehension exceeded 80% on all aspects of performing the test and
interpreting the results [55]. Of 5662 individuals who received test kits (Fig. 1), 4562 (82%) were from high-prevalence populations (10% MSM and 90% high-risk heterosexuals). Only 56 (1.11%) users were unable to obtain a result (“test system failures”); 88 self-test results were true-positive, 8 false-negative, 4902 true-negative, and 1 false-positive. HIV prevalence was 2.12%, sensitivity of the self-test 91.67% (95%CI: 84.24–96.33%) and specificity 99.98% (95%CI: 99.89–100.0%) [55].

Although the test’s sensitivity did not meet the recommended minimum requirement, FDA constructed a Monte Carlo model to evaluate the test’s potential public health risks and benefits. The model predicted, based on the results of the clinical trial, that 2.8 million

Fig. 1. Disposition of subjects in analyses populations of OraSure Technologies phase III clinical trial data submitted to the FDA [56].

persons with a seropositivity of 1.6% would use the self-test during the first year, yielding 45,000 true-positive and 3,800 false-negative test results [56]. Based on the assumption that 8–10 transmissions would be averted for every 100 persons who learned they were HIV-positive [3], the model predicted that the self-test might avert more than 4,000 new transmissions of HIV. False-negatives due to the test’s sensitivity had implications for individual health, but sensitivity had little impact on the number of net transmissions averted in the model: 4,100 at 84% sensitivity; 4,600 at 96%. Based on this information, the FDA approved the oral self-test (OraQuick In-Home HIV Test) on July 3, 2012. However, the predicted HIV seropositivity rate of 1.6% might be an overestimate. In the clinical trial, the low prevalence population had a seropositivity of only 0.09%; a population with such a prevalence might be expected to be more representative of kit users [57].

Concerns about self-testing: some dispelled, some remain

Several reservations have been expressed regarding self-testing including: 1) concerns about correct interpretation, emotional consequences of a positive result, and theoretical misuse; 2) the test’s suboptimal sensitivity and window period of up to three months; 3) cost; 4) its effectiveness for facilitating entry to care; and 5) the possibility of “risk compensation” (that frequent testing or testing before sexual encounters might lead to increased risk behavior).

Lack of counseling and supervision is inherent to self-testing, and mental distress or even suicide after a positive test result is possible [58,59]. However, home sample collection for HIV has proceeded for more than a decade without documentation of adverse consequences [36,59], and concerns about suicide have not been substantiated [35,60]. Evidence suggestive of increases in suicide comes from older studies prior to availability of effective ART [61,62]. A large study of military recruits did not find a statistically significant increase in the risk of suicide in the months immediately following a positive HIV test [63]. The availability of effective ART has also changed perception of the disease. In fact, some at-risk individuals have reported reduced anxiety [64] or feeling “calm” [55] upon learning their results.

Concern also persists about the self-test’s sensitivity compared with professional-use tests on blood specimens and the possibility that unsupervised self-testing might lead to false reassurance during the acute HIV infection “window period” [65–67]. These concerns might be especially relevant for the same high-risk populations who expressed specific interest in self-testing. In the study of MSM at the Seattle STI clinic, 16 (8%) of 192 HIV-infected patients had a negative OraQuick rapid test but positive enzyme immunoassay, and an additional 23 (12%) had detectable HIV RNA but no detectable antibody [34]. However, this limitation is applicable to all rapid HIV tests whether conducted by professionals or via self-test, and highlights the importance of frequent retesting in high risk individuals. Despite the window period, screening prospective sex partners before sex with a rapid HIV test might help reduce HIV transmission [29,68]. One model of transmission among MSM who never used condoms determined that rapid HIV self-testing with unprotected intercourse after a negative result led to a lower probability of HIV infection. However, this benefit was lost if condoms were used in at least one in four sexual encounters [68].

The price for the self-test kit might affect its potential public health benefits [18,69] if its adoption is limited only to those who can afford it, rather than those who need it [69]. The current retail price of the FDA-approved test in the U.S. is $39.99. In the report of the 1998–99 HIV Testing Survey, among the 939 participants who had heard of home collection kits but had not used them, kit cost was the third most common concern (34%) after concerns about accuracy (56%) and lack of in-person counseling (47%) [37]. Among heterosexuals in urban areas of the United States, HIV prevalence rates are inversely related to socioeconomic status [70], and HIV diagnosis rates among all adults and adolescents are higher in communities with a lower socioeconomic composition [71]. Thus, the populations in greatest need of an HIV test might be the least able to pay for it [69]. In NYC, among persons who considered self-testing acceptable, approximately half reported some financial barriers to its purchase [19]. MSM in the Seattle study were also sensitive to price: only 17% would pay $40 or more for a kit [26]. In Spain, 17.9% would pay $38 or more [72], but in Singapore, only private clinic attendees were willing to pay up to $15 [45].

A major concern about the HIV self-test is whether some persons might fail to seek confirmatory testing or medical care after a positive test result. With the home collection kit, 65% of HIV-positive users accepted referrals for medical care, and 23% already had a source of care [36]. In the clinical trial of the self-test, 88% of those testing positive reported they would “definitely” follow-up with a doctor or clinic; another 8% were “highly likely” to do so [55]. These results are reassuring, but in the clinical trial, follow-up contact was required, and, thus, responses were not necessarily representative of eventual users. In the Seattle self-test study, one sex partner of a study participant tested positive with a kit obtained from the participant, assumed that the test result was definitive, and did not seek timely confirmatory testing or follow-up care [73].
Finally, it is not known whether persons who use self-tests might adopt riskier behaviors (i.e., risk compensation) after receiving “good news” (a negative self-test result). Although risk compensation has not been noted in recent large trials with frequent HIV testing in conjunction with pre-exposure prophylaxis [31] and male circumcision studies [74], these trials also included intensive risk-reduction counselling. In contrast, one observational study suggested that increased risk behavior might occur after non-occupational post-exposure prophylaxis [75]. Further, in a vaccine preparedness study that included quarterly HIV testing and counseling, more than half of MSM who subsequently seroconverted reported unprotected anal intercourse after study visits at which they tested negative. This decreased substantially after they received their HIV-positive test result [76]. Definitive answers might await an ongoing clinical trial randomizing MSM to a rapid self-test or a clinic-based test to determine the effects of self-tests on the frequency of testing and risk behaviors [77].

Strategies for Use of HIV self-tests

The optimal self-testing paradigm has yet to be established, but a number of alternatives might be feasible. Distributing HIV self-tests through internet solicitations might help reach and increase testing frequency among persons at high risk of HIV acquisition, such as MSM who seek both sexual partners and health information online. Persons visiting social networking sites and urban sexual health clinics are willing to receive HIV testing materials through the mail [78,79], and French MSM participating in an online survey confirmed their willingness to obtain HIV self-tests online [21]. Alternatively, persons with ongoing HIV risks who seek testing could be invited to distribute kits to their social and sexual networks. Use of social networks to recruit persons for testing has proven successful for identifying a high percentage of persons with undiagnosed HIV [80].

Self-testing in resource-constrained settings

Although much of the research and discussion about self-testing has been focused in the U.S. and Europe, such tests also hold promise for resource-constrained countries. Nearly all of 257 heterosexual participants in the community-based study of self-testing in Malawi expressed willingness to test themselves in the future, and all would recommend self-testing to friends and family [44]. However, special challenges in this context include the inability to offer counseling when access to telephones or internet is limited, and the difficulty in obtaining HIV care and treatment for those who test positive. Obstacles to procuring test kits, either due to cost or supply chain logistics, might be another barrier [81]. The lack of regulation to ensure quality of self-testing products poses another challenge [58,59]. However, support for a self-testing paradigm is already mounting [2], especially as a strategy to increase rates of HIV testing among health care workers in Africa [58], and Kenya’s National Guidelines for HIV testing and counseling now include self-testing as a possible option [82].

Looking ahead

As the HIV epidemic continues into its fourth decade, rapid HIV self-tests might offer a new tool to increase the number of persons with HIV who become aware of their infection [83], particularly if the tests are affordable or if test kits can be subsidized for persons at high risk to expand testing and to expedite earlier diagnosis, two key elements of strategies for control of HIV globally.

Yet many questions remain unanswered. Who will ultimately purchase and use the test? Will persons at risk substitute the less sensitive self-test for professional testing, with its better sensitivity? Will those at high risk who have been unwilling to test for HIV use self-tests [18,57,69]? Will cost of the test limit its adoption among those who could benefit the most? What will be the rate and public health impact of false-negative results in various populations? Will persons with a positive self-test seek follow-up testing and ultimately access medical care?

Finally, the approval of the first self-test kit by the FDA will likely stimulate development of other, potentially better self-test kits. Rapid tests with shorter window periods (e.g., fourth-generation antigen-antibody combination assays) are already available outside the U.S [84], and may, in the future, represent a viable over-the-counter option, based on a recent user feasibility study [72]. Regardless, it is important that policymakers, public health leaders, clinicians and researchers continue to explore ways to evaluate new tools and bring them into the hands and homes of those most at risk of HIV acquisition. The HIV self-test may be an important step forward on this path.

Acknowledgements

J.E.M., W.M.E., A.Z., and B.M.B. co-authored all drafts of this manuscript.

The authors acknowledge support from the National Institutes of Health (T32AI049821–09 Training Grant to...
Dr. Julie E. Myers) and the HIV Prevention Trials Network (UM1 AI068619 and CIRC.A 5U01AI069466–06).

Conflicts of interest
Conflicts of Interest and Source of Funding: J.E.M. received support from the National Institutes of Health (T32AI049821–09 Training Grant). W.M.E. received support from the HIV Prevention Trials Network (UM1 AI068619 and CIRC.A 5U01AI069466–06). None of the authors have conflicts of interest to declare.

CDC required disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention or the US Department of Health and Human Services.

References
3. Hall HI, Holmberg DR, Mauldy C. HIV transmission rates from persons living with HIV who are aware and unaware of their infection. AIDS 2012; 26:893–896.
39. CDC. CLIA Certificate of Waiver fact sheet. Available at: http://www.cdc.gov/hiv/topics/testing/resources/factsheets/roll-
cat.ca/fr/news/medmira-launches-rapid-hiv-test-hong-kong-maco-
ca. [Accessed 18 August 2012].
52. BPAC. Transcript of the BPAC 86th Meeting; March 10, 2006. http://www.fda.gov/ohrms/dockets/ac/06/transcripts/2006-
424162.pdf. [Accessed 17 August 2012].
corpnewsArticle&Id=1643909&highlight=. [Accessed 18 August 2012].
BloodVaccines/BloodBloodProducts/ApprovedProducts/Pre-
CommitteesMeetingMaterials/BloodVaccinesandOtherBiolo-
gics/BloodProductsAdvisoryCommittee/UCM303632.pdf. [Ac-
cessed 18 August 2012].
65. Branson BM. The risk of HIV infection from use of an oral fluid HIV rapid test [Abstract 1075] In: 18th Conference on Retro-
67. Louie B, Pandori MW, Wong E, Klausner JD, Liska S. Use of an acute seroconversion panel to evaluate a third-generation enzyme-linked immunoadsays for detection of human immunodefi-
68. Venturina A, Catbalho-Diezgua A, Leu CS, Levin B, Bauerme-
75. Sonder Cj, Prins Jm, Regez RM, Brinkman K, Mulder JW, Veensra J, et al. Comparison of two HIV postexposure pro-
76. Colfax GN, Buchbinder SP, Cornelsen PG, Vittinghoff E, Mayer K, Celum C. Sexual risk behaviors and implications for sec-

